Abstract

Magnesium and its alloys are attractive candidates for automotive and aerospace applications due to their relatively high strength and low density. However, their low ductility determined by hcp structure of material results in limitation of plastic deformation processing. In order to improve ductility as well as mechanical properties, structure refinement processes can be used. It is well known that effective refining of the material structure can be achieved by increasing the cooling rate during casting procedures, hence rapid solidification process (RSP) has been experimented for the fabrication of magnesium alloys. The present paper reports an experimental investigation on the influence of rapid solidification on the mechanical properties of AM60 magnesium alloy. In order to obtain RS material melt spinning process was applied in protective atmosphere, resulting in formation of RS ribbons. Following consolidation of the RS material is necessary to obtain bulk material with high mechanical properties, as so hot extrusion process was applied. It was noticed that application of plastic consolidation by hot extrusion is the most effective process to achieve full densification of material. For comparison purposes, the conventionally cast and hot extruded AM60 alloy was studied as well. The purpose of the present study was to investigate in detail the effect of rapid solidification and extrusion temperature on the structure and mechanical properties of the materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.