Abstract

The effect of alkaline-earth oxide additions on aqueous rechargeable battery is investigated using microscopic and spectroscopic techniques. The alkaline-earth oxide additions such as magnesium oxide (MgO) and barium oxide (BaO) were physically mixed to the manganese dioxide (MnO 2) cathode of a cell comprising zinc as an anode and aqueous lithium hydroxide as the electrolyte. The results showed that such additions greatly improved the discharge capacity of the battery (from 145 to 195 for MgO and 265 mAh/g for BaO). Capacity fade with subsequent cycling is reduced only for MgO but not for BaO. With an aim to understand the role of these additives and its improvement in cell performance, we have used microscopy, spectroscopy, ion beam analysis and diffraction based techniques to study the process. Transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy analysis (EDS) results showed evidence of crystalline MnO 2 particles for MgO as additive, whereas, MnO 2 particles with diffused structure leading to mixture of phases is observed for BaO additives which is in agreement with X-ray diffraction (XRD) data. This work relates to improvement in the electrochemical behaviour of the Zn–MnO 2 battery while the MgO additive helps to reduce the formation of manganese and zinc such as hetaerolite that hinders the lithium intercalation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.