Abstract

We report on the frequency dependent conductance measurements of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs). The properties of the devices with as-deposited and annealed 9-nm-thick Al2O3 gate oxide were investigated. The trap density in the range of 1011 cm−2 eV−1 was evaluated for the nonannealed devices. However, the conductance versus frequency peaks were significantly broader than those expected from theory, which indicates a surface potential fluctuation due to nonuniformities in the oxide charge and interface traps. Additionally, the dependence of the trap state time constant on gate voltage showed a deviation from the expected exponential function. However, the annealed devices (680 °C, 5 min) yielded a slightly lower (∼75%) trap density. Moreover, the conductance versus frequency data and the time constant versus gate voltage dependence of the annealed devices were in full agreement with the theoretical ones. The results show that the frequency dependent conductance analysis can be a useful tool for the characterization of AlGaN/GaN MOSHFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call