Abstract

This paper describes a theoretical and experimental study for determination of the through-air system impulse response and insertion loss with different air-coupled ultrasonic transducers. Wide-band piezopolymer transducers (PVDF) are employed in both transmission and reception modes and their behavior assessed by means of mathematical modeling and experiment. Specifically, a linear systems approach, modified to include the influence of attenuation in the propagation medium, was used to design suitable PVDF transducers for wide-band operation in air. Suitable devices were then manufactured for determination of the transmission and reception response characteristics of piezocomposite and electrostatic transducers when operating in the air environment. A range of transducers was evaluated, including 1-3 connectivity composites of different ceramic volume fraction and mechanical matching conditions, in addition to electrostatic devices of varying design. To complement the investigation, relative performances for narrow-band operation are also presented under transmission and transmit-receive conditions. Despite the obvious measurement difficulties, good agreement between theory and experiment was observed and the methodology is shown to provide a convenient and robust procedure for comparison of through-air transducers operating in the frequency range 50 KHz to 2 MHz. Although highly resonant, the most effective composite transducers under consideration demonstrate an improvement in two-way insertion loss of 22.4 dB and 11.5 dB over a corresponding electrostatic pair, under narrow-band and wide-band operation, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.