Abstract

In dynamic dislocation-defect analysis, the thermodynamic deformation-mode signatures are examined as the ageing proceeds. In this method, the activation volume (ν) and the mean slip distance (λ) is simultaneously determined with the flow stress (τ) such that the inverse workhardening slope (1/θ) can be plotted versus b2λ/ν where b is the Burgers vector. The slope of this almost linear locus is directly proportional to the activation distance (d). Calibration with a model alumina-dispersed high conductivity copper reveals that punched-out loops are produced up to failure and is represented by a linear locus from 0.1 to 11 % strain. Artificial ageing of AA6111 at 180°C follows this pattern but the naturally-aged specimen manifest a distinctly different signature which shows a transition as the GP zone-type precipitates are sheared. Furthermore by selecting a suitable tensile-test temperature below 250K, the particle size and volume fraction can be determined if particle shearing does not take place. The optimum size and volume fraction necessary for sufficient strength and ductility can be assessed using this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.