Abstract

Within the framework of the 24th Indian Antarctica Expedition (IAE), observations of total column aerosol optical depth (AOD), ozone (TCO) and precipitable water content (TCW) using a multi-channel solar-radiometer (MICROTOPS-II: Microprocessor-controlled Total Ozone Portable Spectrometer-II), and observations of short-wave global radiative flux using a wide-band pyranometer have been carried out over the Indian Antarctica station Maitri (70.76° S, 11.74° E) and the southern Indian Ocean during December 2004–February 2005. These extensive datasets have been utilized to investigate the aerosol optical, physical and radiative properties, and their interface with simultaneously measured gases. Data over the Oceanic region have been collected from the ship front deck. The daily mean AOD at a characteristic wavelength of 500 nm was found to be 0.042 with an average Angstrom coefficient of 0.24, revealing an abundance of coarse-mode particles. Interestingly, the January fluxes were found to be less by about 20% compared with those in February. The average short-wave direct radiative forcing due to aerosols showed cooling at the surface with an average value of −0.47 Wm−2. The TCO increased from about 252 DU around 38° S to about 312 DU at 70° S, showing a gradual increase in ozone with increasing latitude. The TCO measured by the surface-based ozone monitor matched reasonably well with that observed by the Total Ozone Mapping Spectrometer (TOMS) satellite sensor within 5%. Variability in ozone on a daily scale during the study period was less than 4% over the Antarctica region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.