Abstract

Abstract. A validation study is conducted regarding aerosol optical size property retrievals from measurements of the direct sun beam only (without the aid of diffuse radiation). The study focuses on using real data to test the new GRASP-AOD application, which uses only spectral optical depth measurements to retrieve the total column aerosol size distributions, assumed to be bimodal lognormal. In addition, a set of secondary integral parameters of aerosol size distribution and optical properties are provided: effective radius, total volume concentration and fine-mode fraction of aerosol optical depth (AOD). The GRASP-AOD code is applied to almost 3 million observations acquired over 20 years (1997–2016) at 30 AERONET (Aerosol Robotic Network) sites. These validation sites have been selected based on known availability of an extensive data record, significant aerosol load variability throughout the year, wide worldwide coverage and diverse aerosol types and source regions. The output parameters are compared to those coming from the operational AERONET retrievals. The retrieved fine-mode fractions at 500 nm (τf(500)) obtained by the GRASP-AOD application are compared to those retrieved by the spectral deconvolution algorithm (SDA) and by the AERONET aerosol retrieval algorithm. The size distribution properties obtained by the GRASP-AOD are compared to their equivalent values from the AERONET aerosol retrieval algorithm. The analysis showed the convincing capacity of the GRASP-AOD approach to successfully discriminate between fine- and coarse-mode extinction to robustly retrieve τf(500). The comparisons of 2 million results of τf(500) retrieval by the GRASP-AOD and SDA showed high correlation with a root mean square error (RMSE) of 0.015. Also, the analysis showed that the τf(500) values computed by the AERONET aerosol retrieval algorithm agree slightly better with the GRASP-AOD (RMSE = 0.018, from 148 526 comparisons) than with the SDA (RMSE = 0.022, from 127 203 comparisons). The comparisons of the size distribution retrieval showed agreement for the fine-mode median radius between the GRASP-AOD and AERONET aerosol retrieval algorithm results with an RMSE of 0.032 µm (or 18.7 % in relative terms) for the situations when τ(440)>0.2 occur for more than 80 000 pairs of the study. For the cases where the fine mode is dominant (i.e., α>1.2), the RMSE is only of 0.023 µm (or 13.9 % in relative terms). Major limitations in the retrieval were found for the characterization of the coarse-mode details. For example, the analysis revealed that the GRASP-AOD retrieval is not sensitive to the small variations of the coarse-mode volume median radius for different aerosol types observed at different locations. Nonetheless the GRASP-AOD retrieval provides reasonable agreement with the AERONET aerosol retrieval algorithm for overall coarse-mode properties with with RMSE = 0.500 µm (RMSRE = 20 %) when τ(440)>0.2. The values of effective radius and total volume concentration computed from the GRASP-AOD retrieval have been compared to those estimated by the AERONET aerosol retrieval algorithm. The RMSE values of the correlations were 30 % for the effective radius and 25 % for the total volume concentration when τ(440)>0.2. Finally, the study discusses the importance of employing the assumption of bimodal lognormal size distribution. It also evaluates the potential of using ancillary data, in particular aureole measurements, for improving the characterization of the aerosol coarse-mode properties.

Highlights

  • Information regarding aerosol properties has an important role in several atmospheric activities such as weather prediction, air quality analyses, solar energy, aviation safety and climate studies

  • The aerosol properties obtained by the GRASP-AOD application will be compared to those provided by AERONET retrievals, which come from the spectral deconvolution algorithm (SDA; O’Neill et al, 2003, only input aerosol optical depth from 380–870 nm) and the AERONET aerosol retrieval algorithm (Dubovik and King, 2000; Dubovik et al, 2000, 2002b, 2006; Sinyuk et al, 2020, which uses both skyradiances and sun-direct measurements from 440–1020 nm)

  • We compare the values of the fine-mode aerosol optical depth τf(500) given by the GRASP-AOD, SDA and the AERONET aerosol retrieval algorithm

Read more

Summary

Introduction

Information regarding aerosol properties has an important role in several atmospheric activities such as weather prediction, air quality analyses, solar energy, aviation safety and climate studies (see recent IPCC reports; Solomon et al, 2007; Stocker et al, 2014) Given its impact, both real-time and near real-time global aerosol forecasting products are distributed by several operational centers (e.g., the ECMWF Copernicus Atmosphere Monitoring Service (CAMS), the Finnish Meteorological Institute (FMI), the NOAA National Centers for Environmental Prediction (NCEP), Météo France and the Barcelona Supercomputing Center (BSC)). Both real-time and near real-time global aerosol forecasting products are distributed by several operational centers (e.g., the ECMWF Copernicus Atmosphere Monitoring Service (CAMS), the Finnish Meteorological Institute (FMI), the NOAA National Centers for Environmental Prediction (NCEP), Météo France and the Barcelona Supercomputing Center (BSC)) These products are generated by sophisticated numerical models that use aerosol-related observations (satellite or groundbased) for data assimilation and model evaluation. The new generation of satellites will provide quality long data series of aerosol properties, including a better description of the aerosol size information, that will be used as the main tool for global aerosol monitoring and characterization

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call