Abstract
Usually, the printed circuit board industry has to use special subtractive manufacturing methods, if small line and space dimensions down to 50 μm are desired. This drastically raises production effort and costs. In this paper a method is shown, how the inkjet technology can be used to produce passive RF structures with minimum line and space dimensions of 25 μm. For the first time, this is possible over complete panels of low-cost PCB substrates, which have a relatively high surface roughness compared to ceramic or glass carriers. To ensure process reliability, printed lines must also be plated with an additional electroless copper layer to overcome the surface roughness with conductive layers and to lower insertion loss in the two-digit GHz range. Additionally, a surface impedance model is developed, which allows broadband first time right simulations. Finally, additively produced, passive RF filters are compared to their subtractive counterparts to show their benefits regarding production costs and electrical performance up to 80 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.