Abstract

Paraoxon (POX) is an extremely neurotoxic organophosphorous compound (OP) which main toxic mechanism is the irreversible inhibition of cholinesterase. Although the cholinergic system has always been linked as responsible for its acute effects, experimental studies have suggested that the dopaminergic system also may be a potential target for OPs. Based on this, in this study, the acute intrastriatal effects of POX on dopaminergic neurotransmission were characterized in vivo using brain microdialysis in freely moving rats. In situ administration of POX (5, 25 and 50 nmol, 60 min) significantly increased the striatal dopamine overflow (to 435 ± 79%, 1066 ± 120%, and 1861 ± 332%, respectively), whereas a lower concentration (0.5 nmol) did not affect dopamine levels. Administration of POX (25 nmol) to atropine (15 nmol) pretreated animals, produced an increase in dopamine overflow that was ∼63% smaller than those observed in animals not pretreated. Administration of POX (25 nmol) to mecamylamine (35 nmol) pretreated animals did not significantly affect the POX-induced dopamine release. Our results suggest that acute administration of POX increases the dopamine release in a concentration-dependent way, being this release dependent on acetylcholinesterase inhibition and mediated predominantly by the activation of striatal muscarinic receptors, once the muscarinic antagonist atropine partially blocks the POX-induced dopamine release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.