Abstract

Water treatment with activated carbon (AC) is an established method for the removal of organic micropollutants and natural organic matter. However, it is not yet possible to predict the removal of individual pollutants. An appropriate material characterization, matching adsorption processes in water, might be the missing piece in the puzzle. To this end, this study examined 25 different commercially available ACs to evaluate their material properties. Frequently reported analyses, including N_2 adsorption/desorption, CHNS(O), point of zero charge (PZC) analysis, and X-ray photoelectron spectroscopy, were conducted on a selected subset of powdered ACs. Inorganic elements examined using X-ray fluorescence and X-ray diffraction spectroscopy revealed that relative elemental contents were distinctive to the individual AC’s raw material and activation procedure. This study also is the first to use thermogravimetric analysis (TGA) coupled to Fourier-transform infrared spectroscopy (FTIR) to conduct quantitative analyses of functional surface oxygen groups (SOGs: carboxylic acid, anhydride, lactone, phenol, carbonyl, and pyrone groups) on such a large number of ACs. The comparably economical TGA method was found to provide good surrogates for the PZC by pyrolytic mass loss up to 600 ^{circ }C (ML_{600}), for the oxygen content by ML_{1000} and for the carbon content by oxidation. Mass loss profiles depict the AC’s chemistry like fingerprints. Furthermore, we found that SOG contents determined by TGA-FTIR covered a wide individual range and depended on the raw material and production process of the AC. TGA and TGA-FTIR might therefore be used to identify the suitability of a particular AC for a variety of target substances in different target waters. This can help practitioners to control AC use in waterworks or wastewater treatment plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call