Abstract

Interface adsorption of gases and liquid on a clean solid surface could be due to the physical or chemical adsorption. In this study, the activated carbon was prepared from sugar cane husk (powder and granular form) using phosphoric acid (H3PO4) as activating agent. Sample was activated at 500°C for two hours in the furnace and washed using vacuum method. Besides, surface area of activated carbon was defined using Single Point Brunauer-Emmett-Teller (BET) Nitrogen Gas. The physico-chemical characteristics of the prepared activated carbon were characterized by Fourier-Transformed Infrared Spectroscopy (FTIR), gravimetric method, and Field Emission Scanning Electron Microscopy (FESEM). The adsorption study by surfactants, namely CTAB (cationic) and TX-100 (non-ionic) were investigated. The experimental results showed that a good activated carbon was prepared from sugar cane husk granular (SCH-G) gave the highest BET surface area of 860.18 m2/g and the adsorption capacity of SCH-G activated carbon at 25°C using TX-100 (205.81 mg g-1) was greater compared to the CTAB (108.20 mg g-1). This study has shown that the sugar cane husk was a good activated carbon and has potential to be used as adsorbent for the removal of surfactants from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.