Abstract

AbstractThe structure and electronic properties of the Brønsted acid site in B, Al or Ga isomorphously substituted ZSM‐5 zeolites were studied by using quantum cluster and embedded ONIOM approaches. In the former approach, zeolites are modeled by 5T and 12T quantum clusters, where T represents a Si or Al atom. In the latter model, called “Embedded ONIOM”, the long‐range interactions of the zeolite lattice beyond the 12T quantum cluster is included via optimized point charges added to the ONIOM(B3LYP/6‐31G(d,p):UFF). Inclusion of the extended zeolitic framework covering the nanocavity has an effect on the structure and adsorption properties. We found that the OH distances and v OH of the acidic proton in zeolite obtained from both models can predict the trend of acid strength as: B‐ZSM‐5 < Ga‐ZSM‐5 < Al‐ZSM‐5, which is in very good agreement with the experimental sequence. Furthermore, the PA data calculated from E‐ONIOM is also consistent with the experimental trend: B‐ZSM‐5 < Ga‐ZSM‐5 < Al‐ZSM‐5. It has, therefore, been demonstrated that our embedded ONIOM model provides accurate performance and can be one of the useful and affordable methods for future mechanistic studies involving petrochemical reactions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.