Abstract

ABSTRACT In this work, we focus on the study of radiation-induced desorption processes that occurred in acetonitrile ice irradiated by broad-band X-rays (6 eV to 2 keV) monitored by Fourier transform infrared spectroscopy at different radiation fluences. In a previous work, we used the procoda code to derive the chemical evolution of the ice. Here, we have observed that the acetonitrile desorbed column density is at least two orders of magnitude larger than the desorbed column densities of daughter or granddaughter molecular species at chemical equilibrium stage. This indicates that total desorption column density is mainly governed by the father molecule, as also previously hypothesized in experimental studies. This occurs basically because the acetonitrile column density is larger than the other ones. In particular, at chemical equilibrium acetonitrile desorption column density represents almost 98 per cent of the total, while it is close to 1 per cent for H, CN, and CH2, the species with larger molecular desorption percentages at chemical equilibrium. Another derived quantity is what we called intrinsic desorption rate, which is a number per second for individual species. Some of the larger intrinsic desorption rates were 6.2 × 10−6 (CH3CN), 6.2 × 10−6 (CN), 5.7 × 10−6 (H), 5.7 × 10−6 (CH2), and 4.4 × 10−6 (C2N2). These results help to put constraints in astrochemical models and can also be useful to clarify some astronomical radio observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call