Abstract

Acoustic properties of a vibro-acoustography system designed to detect kidney stones were measured. Our system was formed with two spherical transducers (10 cm diameter, 20 cm curvature) in degassed water that were confocal and separated by an angle of 30 degrees. They were driven at 1.1 MHz and 1.125 MHz to generate a difference frequency of 25 kHz. The acoustic field was characterized by scattering from a known target, the curved surface of a steel cylinder with 6.4 mm diameter. Waveforms of both the low and high frequency scattered signals were measured for different target locations, different hydrophone locations encircling the target, and different acoustic pressures. Focal dimensions of the −6 db pressure profile measured at 25 kHz and the fundamental were both 3×10 mm, in an elliptical shape, which is highly localized. Scatter amplitude was rather insensitive to hydrophone position when the target was in the focus, quite sensitive to hydrophone position when the target was out of the focus, and increased linearly with the sum of the sources. It is hoped that this characterization will help improve the understanding of the mechanisms of the targeting technique. [Work supported by NIH grants DK43881 and DK55674, and NSBRI grant SMS00203.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.