Abstract
We report measurements of the temporal and spatial evolution of plasmas, produced on gaseous targets by focused ns-Nd:YAG laser. Characterization of the UV–VUV light source includes time-resolved visualization of the spatial growth and the spectroscopic signatures of plasmas produced on pulsed, supersonic jets of helium, argon, nitrogen and xenon gases into a vacuum chamber. Photon fluxes of up to 1012photonscm−2nm−1/pulse have been measured in the wavelength region 100–260nm within the first 30ns following the laser pulse. Also discussed for comparison are plasma signatures in helium, argon and nitrogen gases at standard temperature and pressure. The results indicate availability of photon fluxes, at typical laser repetition rates, that are at least one order of magnitude higher than those achieved from commercial c.w. lamp light sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.