Abstract
The amylosucrase (ASase, EC 2.4.1.4) utilizes sucrose as the sole substrate to catalyze multifunctional reactions. It can naturally synthesize α-1,4-linked glucans such as amylose as well as sucrose isomers with more favorable properties than sucrose with a lower intestinal digestibility and non-cariogenic properties. The amino acid sequence of the asase gene from Deinococcus cellulosilyticus (DceAS) exhibits low homology with those of other ASases from other Deinococcus species. In this study, we cloned and expressed DceAS and demonstrated its high activity at pH 6 and pH 8 and maintained stability. It showed higher polymerization activity at pH 6 than at pH 8, but similar isomerization activity and produced more turanose and trehalulose at pH 6 than at pH 8 and produced more isomaltulose at pH 8. Furthermore, the molecular weight of DceAS was 226.6 kDa at pH 6 and 145.5 kDa at pH 8, indicating that it existed as a trimer and dimer, respectively under those conditions. Additionally, circular dichroism spectra showed that the DceAS secondary structure was different at pH 6 and pH 8. These differences in reaction products at different pHs can be harnessed to naturally produce sucrose alternatives that are more beneficial to human health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.