Abstract

A subpopulation of the CD3+ peripheral T lymphocytes express the TCR-gamma/delta complex. Three distinct TCR-gamma forms that differ in size and in the ability to form a disulfide bridge with the TCR-delta subunit have been described. In this study we analyze the structural difference between the non-disulfide-linked 55-kD and 40-kD TCR-gamma chains. The 40-kD TCR-gamma form contains a smaller polypeptide backbone and carries less carbohydrate compared with the 55-kD TCR-gamma form. A cDNA clone corresponding to the 40-kD TCR-gamma subunit lacks one copy of the second exon of the constant region that is present in the other TCR-gamma subunit. This exon copy encodes part of the connector region that is located between the constant domain and the membrane spanning region. We show that the number of potential N-linked glycan attachment sites are the same for the two TCR-gamma forms. Since these attachment sites are located in the connector region we conclude that the connector region influences the amount of N-linked carbohydrates added to the core TCR-gamma polypeptide, probably by affecting the conformation of the protein. In contrast to the TCR-beta constant region usage, the TCR-gamma constant regions are unequally expressed. Virtually exclusive usage of disulfide-linked complexes were found in some individuals, while both the disulfide-linked and the 40-kD, non-disulfide-linked TCR-gamma forms were detected in other subjects. The ability to distinguish these TCR-gamma/delta forms now makes it possible to study the mechanisms that govern their selection and to determine if they correspond to functionally distinct isotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call