Abstract

Delignification efficacy of xylanases to facilitate the consequent chemical bleaching of Kraft pulps has been studied widely. In this work, an alkaline and thermally stable cellulase-less xylanase, derived from a xylanolytic Bacillus subtilis, has been purified by a combination of gel filtration and Q-Sepharose chromatography to its homogeneity. Molecular weight of the purified xylanase was 61kDa by SDS-PAGE. The purified enzyme revealed an optimum assay temperature and pH of 60°C and 8.0, respectively. Xylanase was active in the pH range of 6.0-9.0 and stable up to 70°C. Divalent ions like Ca(2+), Mg(2+) and Zn(2+) enhanced xylanase activity, whereas Hg(2+), Fe(2+), and Cu(2+) were inhibitory to xylanase at 2mM concentration. It showed K ( m ) and V ( max ) values of 9.5mg/ml and 53.6μmol/ml/min, respectively, using birchwood xylan as a substrate. Xylanase exhibited higher values of turn over number (K (cat)) and catalytic efficiency (K (cat)/K (m)) with birchwood xylan than oat spelt xylan. Bleach-boosting enzyme activity at 30U/g dry pulp displayed the optimum bio-delignification of Kraft pulp resulting in 26.5% reduction in kappa number and 18.5% ISO induction in brightness at 55°C after 3h treatment. The same treatment improved the pulp properties including tensile strength and burst index, demonstrating its potential application in pre-bleaching of Kraft pulp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call