Abstract
It’s well known that the microstructure dramatically affects the strain behaviour of superplastic materials. Virtually, each batch should be characterized ex novo: optimal ranges of temperature and strain rate as well as material constants have to be defined. An accurate and simple characterization methodology based on a strain condition close enough to the real forming process is of great industrial interest. In this work, a characterization methodology based on an experimental and numerical approach is proposed. Experimental free inflation tests with a pressure jump were carried out on a titanium alloy. Results were used as reference data for an inverse analysis based on the height evolution of the dome. Material constants were calculated by means of a genetic algorithm. The approach was verified with further experimental results and a good correlation was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.