Abstract

Numerical methods are widespread in forming applications since a deeper understanding and a finer calibration of the process can be reached without most of the assumptions used in analytical approaches. In this calibration procedure the characterization of the material behaviour is an important preliminary step that cannot be avoided. Experimental tests can be numerically modelled and material constants can be found by inverse methods making numerical results as close as possible to experimental ones. In this work material parameters of a superplastic aluminium alloy have been found by experimental forming tests and an inverse analysis. Constant pressure free inflation tests were firstly performed to find the optimal range for temperature and strain rate values. Material constants were then calculated, on the basis of these tests, minimizing errors between experimental and numerical data through a gradient based optimization iterative procedure. Constant strain rate experimental tests were finally used to refine material parameters and to gain a better agreement between experiments and numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.