Abstract
An experiment was conducted to characterize a superheated fuel jet (Jet-A) injected into an unheated crossflow of air. The liquid phase of the fuel jet was characterized with high speed imaging and phase Doppler interferometry. The transition from a shear-atomized to a flash-atomized spray at a fuel temperature of 513 K (465°F) was observed at an ambient pressure of 1 atm, which is consistent with the bubble and dew point curves predicted for JP-8. The explosive breakup that was seen in the flash-atomized spray produced submicron droplets with a high radial momentum. This unique behavior makes superheated fuels an attractive design feature for fuel preparation devices that can employ flash boiling to enhance fuel atomization and mixing in a compact volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.