Abstract

Ionic liquid (IL) additives to both traditional and advanced oxygen reduction reaction (ORR) electrocatalysts have yielded remarkable improvements in catalyst performance and durability. However, incorporating ILs or IL-modified catalysts into the electrodes of a proton exchange membrane fuel cell (PEMFC) membrane electrode assembly (MEA) has proven to be challenging. Sulfonated poly(ionic liquid) block copolymers (S-PILBCP) present an opportunity to incorporate IL functionality directly into the ionomer, orthogonal to protonic conductivity. Here, we use a rotating disc electrode (RDE) to characterize the interface between a S-PILBCP and Pt catalyst in comparison to Nafion. Catalyst thin films prepared with S-PILBCP show an 80% improvement in the ORR activity over those containing Nafion. Thin films of S-PILBCP also show a significantly reduced degree of poisoning sulfonate adsorption on a Pt(111) surface in comparison to Nafion. These half-cell results provide useful insights that help to highlight the source of the impact of the S-PILBCP on PEMFC MEA performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call