Abstract

Airway epithelial cells are a susceptible site for injury by ambient air toxicants such as naphthalene that undergo P450-dependent metabolic activation. The metabolism of naphthalene in Clara cells to reactive intermediates that bind covalently to proteins correlates with cell toxicity. Although several proteins adducted by reactive naphthalene metabolites were identified in microsomal incubations, new methods that maintain the structural integrity of the lung are needed to examine protein targets. Therefore, we developed a method that involves inflation of the lungs via the trachea with medium containing (14)C-naphthalene followed by incubation in situ. The viability of this preparation is supported by maintenance of glutathione levels, rates of naphthalene metabolism, and exclusion of ethidium homodimer-1 from airway epithelium. Following in situ incubation, the levels of adduct per milligram of protein were measured in proteins obtained from bronchoalveolar lavage, epithelial cells, and remaining lung. The levels of adducted proteins obtained in lavage and epithelial cells were similar and were 20-fold higher than those in residual lung tissue. (14)C-Labeled adducted proteins were identified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) and quadrupole-TOF MS/MS. Major adducted proteins include cytoskeletal proteins, proteins involved in folding and translocation, ATP synthase, extracellular proteins, redox proteins, and selenium binding proteins. We conclude that in situ incubation maintains structural integrity of the lung while allowing examination of reactive intermediate activation and interaction with target cell proteins of the lung. The proteins adducted and identified from in situ incubations were not the same proteins identified from microsomal incubations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.