Abstract

A single-nozzle FLOX® model combustor was used to produce a confined, premixed CH4-air flame with an equivalence ratio of ϕ = 0.74 and a jet exit velocity of vjet = 150m/s with a preheat temperature of T0=300°C. For the first time for this combustor, surface thermometry was performed on the chamber walls. In addition, particle imaging velocimetry (PIV) and planar laser-induced fluorescence of hydroxyl radical (OH PLIF) were acquired simultaneously in this flame at 5 kHz repetition rate. The interface between burnt and unburnt gas mixture were identified from instantaneous OH PLIF images and were compared with corresponding PIV results for flame-turbulence interaction analysis. Combustion instabilities were analyzed via proper orthogonal decomposition and phase-averaged flow field and OH distribution. A pronounced flapping motion of the jet was identified and its impact on the recirculation of hot burnt gas was characterized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.