Abstract

BackgroundTranscriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes.ResultsSecologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements.ConclusionsThe C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1678-y) contains supplementary material, which is available to authorized users.

Highlights

  • Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing

  • Crude extracts of galactose-induced yeasts transformed with the pYeDP60 empty control vector or the pYeDP60 expressing each P450 were subsequently incubated with NADPH, H+ and loganin, and analyzed by ultra-performance liquid chromatography-mass spectrometry analysis (UPLC-MS) (Fig. 2)

  • While no modification of loganin occurred with the empty vector crude extract, a conversion of loganin into secologanin was observed with the crude extract of each enzyme

Read more

Summary

Introduction

Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Monoterpenoid Indole Alkaloids (MIAs) constitute a remarkable class of specialized metabolites, with a huge chemical diversity, and a source of several active compounds, including important pharmacophores. Some of the most active anticancer drugs are based on this type of skeleton including camptothecans and Vinca alkaloids. MIAs stem from a unique polyvalent skeleton named strictosidine. This central precursor is the condensation product of a tryptophan-derived amine coupled to an extensively modified monoterpenoid moiety (Fig. 1). While tryptamine is derived from tryptophan by a single reaction catalyzed by tryptophan decarboxylase (TDC)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call