Abstract

Periostin (osteoblast-specific factor OSF-2) is a secreted protein occurring in seven known isoforms, and it is involved in a variety of biological processes in osteology, tissue repair, oncology, cardiovascular and respiratory systems or allergic manifestations. To analyze functional aspects of periostin, or the ability of periostin as potential biomarker in physiological and pathological conditions, there is the need for a precise, well-characterized assay that detects periostin in peripheral blood. In this study the development of a sandwich ELISA using monoclonal and affinity-purified polyclonal anti-human periostin antibodies was described. Antibodies were characterized by mapping of linear epitopes with microarray technology, and by analyzing cross-reactive binding to human periostin isoforms with western blot. The assay was validated according to ICH/EMEA guidelines. The monoclonal coating antibody binds to a linear epitope conserved between the isoforms. The polyclonal detection antibody recognizes multiple conserved linear epitopes. Therefore, the periostin ELISA detects all known human periostin isoforms. The assay is optimized for human serum and plasma and covers a calibration range between 125 and 4000 pmol/L for isoform 1. Assay characteristics, such as precision (intra-assay: ≤3%, inter-assay: ≤6%), spike-recovery (83%-106%), dilution linearity (95%-126%), as well as sample stability meet the standards of acceptance. Periostin levels of apparently healthy individuals are 864±269 pmol/L (serum) and 817±170 pmol/L (plasma) respectively. This ELISA is a reliable and accurate tool for determination of all currently known periostin isoforms in human healthy and diseased samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.