Abstract
This article describes the properties and performance of a rotary total artificial heart (TAH) that produces inherently pulsatile flow. The hydraulic performance of the TAH was characterized using a mock circulatory loop to simulate four physiologically relevant conditions: baseline flow, increased flow, systemic hypertension, and pulmonary hypertension. The pump has a variable shuttle rate (beats per minute), percentage dwell time, and angular velocity on either side (revolutions per minute), which allows for full control of the flow rate and pulsatility over a range of healthy and pathologic pressures and flow rates. The end-to-end length and displacement volume of the TAH are 9.8cm and 130mL, respectively, allowing it to fit in smaller chest cavities including those of smaller adults and juvenile humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.