Abstract

The phosphorylation of two purified vaccinia virus proteins (Acceptors I and II) by a protein kinase isolated from vaccinia virus cores has been studied. Phosphorylation of viral acceptor proteins by the purified enzyme was dependent on the presence of ATP, Mg2+, and protamine or other basic proteins, and was maximal at alkaline pH values. Cyclic mononucleotides did not stimulate the vaccinia protein kinase under a variety of conditions. Protamine, however, was shown to function as an enzyme activator. In its presence, the purified vaccinia protein kinase phosphorylated mainly serine residues in Acceptor I, and predominantly threonine residues in Acceptor II. Phosphorylation of protamine accounted for less than 1% of the total 23P incorporation. Tryptic peptide maps prepared from 32P-labeled Acceptors I and II demonstrated that they contained different labeled peptide sequences and were, therefore, distinct protein species. From additional studies on both purified and virus-associated protein kinase it was concluded that various proteins affected the protein kinase reaction in one of three ways. One class of proteins served as phosphate acceptors, but only when another activator protein was present. A second class consisted of proteins that were strong activators but poor phosphate acceptors. The third class contained proteins that were fair phosphate acceptors, but which also activated the phosphorylation of other acceptor proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.