Abstract

We have identified a novel aspartylglucosaminuria (AGU) mutation in the second exon of the aspartylglucosaminidase (AGA) gene resulting in a lysosomal storage disease in a Puerto Rican pedigree. This T192-->A transversion causes replacement of Cys64 with a premature translational stop codon and the patients' fibroblasts exhibit dramatically decreased steady-state levels of AGA mRNA. Immunofluorescence analysis and analysis of immunoprecipitated metabolically labelled AGA polypeptides from patient fibroblasts unexpectedly revealed traces of normally sized inactive AGA precursor polypeptide instead of the predicted short polypeptide of 40 amino acids, thus demonstrating readthrough due to suppression of the premature translational stop codon. The translated AGA precursor is not processed further and remains inactive. The Cys64 substitution evidently disturbs the folding of the nascent polypeptide in the endoplasmic reticulum, thus preventing activation by proteolytic cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call