Abstract

We present the progress of characterization of a low-noise, photon counting Electron Multiplying Charged Coupled Device (EMCCD) operating in optical wavelengths and demonstrate possible solutions to the problems of Clock-Induced Charge (CIC) and other trapped charge through sub-bandgap illumination. Such a detector will be vital to the feasibility of future space-based direct imaging and spectroscopy missions for exoplanet characterization, and is scheduled to y on-board the AFTA-WFIRST mission. The 512&times;512 EMCCD is an e2v detector housed and clocked by a Nüvü Cameras controller. Through a multiplication gain register, this detector produces as many as 5000 electrons for a single, incident-photon-induced photoelectron produced in the detector, enabling single photon counting operation with read noise and dark current orders of magnitude below that of standard CCDs. With the extremely high contrasts (Earth-to-Sun flux ratio is ~ 10<sup>-10</sup>) and extremely faint targets (an Earth analog would measure 28<i><sup>th</sup></i> - 30<i><sup>th</sup></i> magnitude or fainter), a photon-counting EMCCD is absolutely necessary to measure the signatures of habitability on an Earth-like exoplanet within the timescale of a mission's lifetime, and we discuss the concept of operations for an EMCCD making such measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.