Abstract

Self-assembled monolayers (SAMs) of N,N′-bis(2-phosphonoethyl)-3,4,9,10-perylenediimide (PPDI), a perylene dye substituted with phosphonic acid groups, were deposited on indium tin oxide (ITO) substrates. Dye deposition was confirmed by UV–visible absorption spectroscopy and by electrochemical methods. Electrochemical characterization of the SAM was performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Two reversible redox waves were observed by CV for the PPDI monolayer, corresponding to E1/2 = −0.49 V (radical anion formation) and E1/2 = −0.90 V (dianion formation). The effect of applied bias on the EIS response was studied, comparing a region where PPDI was not reduced (applied bias = 0 V) with a region within the redox window of the imide (applied bias = −0.6 V). The EIS results were analyzed using either impedance (Nyquist and Bode) or capacitance (Cole–Cole) diagrams. Capacitance plots were shown to be by far more sensitive to study the faradaic activity of the SAM, allowing the determination of both the pseudocapacitance (Cpc) for charging the monolayer and the heterogeneous electron transfer rate constant (ket) from the electrode to the SAM. A molecular coverage of 7 × 10–11 mol/cm2 was calculated for the SAM from the pseudocapacitance. A value of ket = 41 s–1 was obtained, consistent with literature data for similar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.