Abstract

A number of ToxR-regulated genes that encode products required for the biogenesis or function of the toxin-coregulated colonization pilus (TCP) of Vibrio cholerae have been identified previously by TnphoA fusions. In this study we have examined the role of the product of one of these genes, tcpG, to which a fusion results in a piliated cell lacking all of the in vivo and in vitro functions associated with TCP. Our results show that TcpG is not an ancillary pilus adhesin component as suggested by the mutant phenotype but instead is a 24-kDa periplasmic protein that shares active-site homology with several different bacterial thioredoxins and protein disulfide isomerase, as well as overall homology with the disulfide bond-forming DsbA periplasmic oxidoreductase protein of E. coli. Corresponding activity can be demonstrated in vitro for TcpG-enriched fractions from a wild-type strain but is absent in a similarly fractionated tcpG-phoA mutant. The phenotype conferred by a tcpG mutation was found to be pleiotropic in nature, also affecting the extracellular secretion of cholera toxin A subunit and a major protease. This suggests a general role for TcpG in allowing a group of virulence-associated (and perhaps other) proteins that contain disulfide bonds to assume a secretion or functionally competent state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.