Abstract

A composite material of polyetheretherketone and short, chopped E-glass fibers was used to produce a segmental bone replacement implant. Problems with current metallic implants include stress-shielding of the surrounding bone and subsequent loosening of the implant. A better match between the bulk material properties of the implant and the bone it replaces can decrease the occurrence of these problems. Composite materials were chosen because their properties can be tailored to match the requirements. Material selection was accomplished with the aid of modeling software, which predicted the composite properties based on its composition and fiber directional parameters. Prototype parts were completed through a series of in-house molding and machining processes. Sections complete with an embedded metallic porous surface were tested to measure the strength of the attachment of the surface. The molded parts were characterized both destructively and nondestructively. The results of tensile tests performed on molded parts were comparable to those using commercially supplied samples. The fiber orientation was measured to verify the random positioning of fibers throughout the part, as assumed in the initial material selection. Ultrasonic C-scanned images confirmed that the molded parts had a very low density of air pockets or voids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.