Abstract

A multifunctional masquerade-like protein has been isolated, purified, and characterized from hemocytes of the freshwater crayfish, Pacifastacus leniusculus. It was isolated by its Escherichia coli binding property, and it binds to formaldehyde-treated Gram-negative bacteria as well as to yeast, Saccharomyces cerevisiae, whereas it does not bind to formaldehyde-fixed Gram-positive bacteria. The intact masquerade (mas)-like protein is present in crayfish hemocytes as a heterodimer composed of two subunits with molecular masses of 134 and 129 kDa. Under reducing conditions the molecular masses of the intact proteins are not changed. After binding to bacteria or yeast cell walls, the mas-like protein is processed by a proteolytic enzyme. The 134 kDa of the processed protein yields four subunits of 65, 47, 33, and 29 kDa, and the 129-kDa protein results in four subunits of 63, 47, 33, and 29 kDa in 10% SDS-PAGE under reducing conditions. The 33-kDa protein could be purified by immunoaffinity chromatography using an Ab to the C-terminal part of the mas-like protein. This subunit of the mas-like protein has cell adhesion activity, whereas the two intact proteins, 134 and 129 kDa, have binding activity to LPSs, glucans, Gram-negative bacteria, and yeast. E. coli coated with the mas-like protein were more rapidly cleared in crayfish than only E. coli, suggesting this protein is an opsonin. Therefore, the cell adhesion and opsonic activities of the mas-like protein suggest that it plays a role as an innate immune protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.