Abstract

AbstractThin films with magnesium oxide (MgO) and silicon oxide (SiO2) compounds mixed at various mixture ratios were deposited on flexible polyether sulfone (PES) substrates by an e‐beam evaporator to investigate their potential for transparent barrier applications. In this study, as the MgO fraction increased, thin films comprising MgO and SiO2 compounds became more amorphous, and their surface morphologies became smoother and denser. In addition, zirconium oxide (ZrO2) was added to the above‐mentioned compound mixtures, and the properties of the compound mixture comprising MgSiZrO were then measured. ZrO2 made the thin mixture films more amorphous, and made the surface morphology denser and more uniform. Whole thin films of 250 ± 30 nm in thickness were formed, and their water vapor transmission rates (WVTRs) decreased rapidly. The best WVTR was obtained by depositing thin films of MgSiZrO compound among the whole thin films. The WVTRs of the PES substrate in the bare state decreased from 47 to 0.8 g m−2 day−1. This MgSiZrO compound was deposited on polyethylene terephtalate (PET) substrates again to confirm the availability of the compound mixture. Thin films on the PET substrates decreased the WVTRs remarkably from 2.96 to 0.01 g m−2 day−1. These results were similar to those of thin films on PES substrates. As the thin mixture films became more amorphous and surface morphology denser and more uniform, the WVTRs decreased. Therefore, the thin mixture films became more suitable for flexible organic light emitting displays (OLEDs) as transparent passivation layers against moisture in air. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.