Abstract

The short arm of chromosome 11 carries genes involved in malformation syndromes, including the aniridia/genitourinary abnormalities/mental retardation (WAGR) syndrome and the Beckwith-Wiedemann syndrome, both of which are associated with an increased risk of childhood malignancy. Evidence comes from constitutional chromosomal aberrations and from losses of heterozygosity, limited to tumor cells, involving regions 11p13 and 11p15. In order to map the genes involved more precisely, we have fused a mouse cell line with cell lines from patients with constitutional deletions or translocations. Characterization of somatic cell hybrids with 11p-specific DNA markers has allowed us to subdivide the short arm into 11 subregions, 7 of which belong to band 11p13. We have thus defined the smallest region of overlap for the Wilms' tumor locus bracketed by the closest proximal and distal breakpoints in two of these hybrids. The region associated with the Beckwith-Wiedemann syndrome spans the region flanked by two 11p15.5 markers, HRAS1 and HBB. These hybrids also represent useful tools for mapping new markers to this region of the human genome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.