Abstract
Wax deposition in petroleum pipelines is deliberated as one of the most severe operational issues, and extraordinary efforts have been made to remediate and prevent this flow assurance problem. Using, polymeric pour point depressants (PPD) as a wax control strategy to improve the fluidity of waxy crude oil and reduce the pour point have received significant attention. The purpose of the current research is to synthesize novel terpolymers which used as PPD and viscosity improvers. The synthesis process occurred via polymerization of stearyl methacrylate (SMA), benhely acrylate (BA), and maleic anhydride (MA) monomers using free radical polymerization method in toluene as a solvent, and (1 wt%) benzoyl peroxide (BZP) as initiator. The chemical structure of the prepared terpolymer was characterized by FTIR and NMR. Also, the crystallization behavior of paraffin wax was investigated by differential scanning calorimetry (DSC). Experimental investigations furnish that the synthesized PPD showed high yield (87%) at the concentration (1:1:1) of BA-co-SMA-co-MA. From FTIR and 1HNMR characterization results observed that maleic anhydride moiety, alkyl chain moiety, and methacrylate moiety are existing in the prepared terpolymer. Furthermore, DSC analysis showed that the glass transition temperature of the prepared terpolymer is weakly stated over a wide temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.