Abstract

Adrenal aldosterone-producing adenomas (APAs) are an increasingly recognized cause of primary aldosteronism, and somatic mutations within the KCNJ5 gene encoding an inwardly rectifying K(+) channel (also called GIRK4 or Kir3.4) have been identified by several groups including our own. We identified the previously noted G151R and L168R mutations in the region of a selectivity filter of the channel as well as a previously unreported 3-base deletion, delI157. Here, we report the functional properties of KCNJ5 channels carrying this novel delI157 mutation. The delI157 mutation was introduced into wild-type KCNJ5 sequences to allow its expression in both H295R cells and Xenopus oocytes to study its expression and electrophysiology, respectively. In the adrenal cell line H295R, the delI157 mutant expresses and traffics normally to the cell surface. However, the current-voltage behavior of the mutant in oocytes is distinct from wild-type channels and mimics closely other selectivity filter mutations. In particular, its ability to support substantial current when extracellular K(+) is replaced by Na(+). We also report for the first time that the mutants have reduced sensitivity to the KCNJ5 inhibitor tertiapin-Q that binds to the external vestibule of the channel pore. This novel KCNJ5 mutation behaves like the three selectivity filter mutations previously reported in APAs depolarizing the cell and showing reduced cation selectivity. The reduced sensitivity to tertiapin-Q suggests that the abnormal Na(+) permeability of these selectivity mutations does indeed reflect structural changes around the mouth of the ion channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call