Abstract

Alginate lyases are essential tools for depolymerizing alginate into bioactive oligosaccharides and fermentable monosaccharides. Herein, we characterized a novel polysaccharide lyase AlgSH17 from marine bacterium Microbulbifer sp. SH-1. The recombinant enzyme exhibited the maximum activity at 30 °C, pH 7.0 and retained 86.20% and 65.43% of its maximum activity at 20 °C and 15 °C, respectively, indicating that AlgSH17 has an excellent cold-adapted property. The final products of AlgSH17 mainly consisted of monosaccharides with small amounts of oligosaccharides with degrees of polymerization (DP) 2–6, suggesting that AlgSH17 possesses both exolytic and endolytic activity. Degradation pattern analysis indicated that AlgSH17 could degrade DP ≥ 4 oligosaccharides into disaccharides and trisaccharides by cleaving the endo-glycosidic bonds and further digest disaccharides and trisaccharides into monosaccharides in an exolytic manner. Products distribution and molecular docking analysis revealed that AlgSH17 could cleave the glycosidic bonds between −1 and +2 within the substrate. Furthermore, The ABTS+, hydroxyl and DPPH radicals scavenging activity of the enzymatic hydrolysates prepared by AlgSH17 reached up to 91.53%, 81.23% and 61.06%, respectively, and the enzymatic hydrolysates displayed an excellent preservation effect on fresh-cut apples. The above results suggested that AlgSH17 could be utilized for the production of monosaccharides, antioxidants and food additives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call