Abstract

To develop a novel multi-catalytic domain (CD) xylanase Xyn2083 from Clostridium clariflavum by expression of its truncated forms in Escherichia coli and cooperation of xylanase with cellulase in the hydrolysis of waste lignocellulosic resources. Xyn2083 has two glycoside hydrolase family (GH) domains GH11 and GH10. These two catalytic domains functioned synergistically in xylan hydrolysis. The recombinant protein with GH11 domain, Xyn2083GH11, had the highest xylanase activity among three constructed truncated forms. The deletion of N-terminal extra amino acid residues of Xyn2083GH11 decreased catalytic activity as well as the stability of the enzyme. The hydrolysis rates of cellulose and xylan in the pretreated corn cobs were 90.56% and 72.80% with the addition of Xyn2083GH11 and cellulase, whereas those were 67.95% and 34.45% using sole cellulase respectively. The structural analysis of substrates indicated that the addition of Xyn2083GH11 led to a looser structure and more exposure of crystal cellulose for cellulase to approach. Since the native multi-CDs' xylanases are rare, the thermostable Xyn2083 provides a good source for functional studies of two CDs coexisted in one xylanase and for potential applications after modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call