Abstract

Small animals are highly valuable resources for radiobiology research. While rodents have been widely used for decades, zebrafish embryos have recently become a very popular research model. However, unlike rodents, zebrafish embryos lack appropriate irradiation tools and methodologies. Therefore, the main purpose of this work is to use Monte Carlo radiation transport simulations to characterize dosimetric parameters, determine dosimetric sensitivity and help with the design of a new micro-irradiator capable of delivering irradiation fields as small as 1.0 mm in diameter. The system is based on a miniature x-ray source enclosed in a brass collimator with 3 cm diameter and 3 cm length. A pinhole of 1.0 mm diameter along the central axis of the collimator is used to produce a narrow photon beam. The MCNP5, Monte Carlo code, is used to study the beam energy spectrum, percentage depth dose curves, penumbra and effective field size, dose rate and radiation levels at 50 cm from the source. The results obtained from Monte Carlo simulations show that a beam produced by the miniature x-ray and the collimator system is adequate to totally or partially irradiate zebrafish embryos, cell cultures and other small specimens used in radiobiology research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call