Abstract

The newly isolated strain E1, identified as a Dietzia sp., proved to have an excellent ability to degrade n-C12 to n-C38 alkane components of crude oil. The preferred substrate was the very long-chain alkane n-eicosane at an optimal temperature of 37 degrees C and an optimal pH of 8 under aerobic conditions. The growth and substrate uptake kinetics were monitored during the n-alkane fermentation process, and Dietzia sp. E1 cells were found to possess three distinct levels of cell-surface hydrophobicity. Gas chromatographic/mass spectrometric analysis revealed that intracellular substrate mineralization occurred through the conversion of n-alkane to the corresponding n-alkanal. The monoterminal oxidation pathway was presumably initiated by AlkB and CYP153 terminal alkane hydroxylases, both of their partial coding sequences were successfully detected in the genome of strain E1, a novel member of the Dietzia genus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.