Abstract

Kinetics of a lipase isolated from Bacillus sp. was studied. The enzyme showed maximum activity at pH 9 and temperature 60°C. The Michaelis constant (KM 0.31 mM) obtained from three different plots i.e., Lineweaver-Burk, Hanes-Wolf and Hofstee, was found to be lower than already reported lipases that confirmed higher affinity of the enzyme for its substrate p-NPL (p-nitrophenyl laurate). Vmax of the enzyme was found to be 7.6 µM/mL/min. Energy of activation calculated from Arrhenius plot was found to be 20.607 kJmol−1. Activation enthalpy (ΔH*) had negative trend and the value for the hydrolysis of p-NPL by the enzyme at optimum temperature was −2.748 kJmol−1. Activation entropy (ΔS*) and free energy of activation (ΔG*) of the enzyme were found to be 1.468 Jmol−1K−1 and −3.237 kJmol−1, respectively at optimum temperature. Low value of Q10 (0.04788) shows high catalytic activity of the enzyme. Mn2+, Fe2+ and Mg2+ enhanced the lipase activity whereas Cu2+, Na+ and Co2+ inhibited the enzyme activity. However, the enzyme activity was not affected significantly by K+ ions. EDTA and SDS also significantly inhibited the lipase activity. Activity of the enzyme was increased in n-hexane while decreased with increase in concentration of acetone, chloroform, ethanol and isopropanol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.