Abstract

A novel killer toxin, encoded by a double-stranded linear DNA plasmid pGK l-1 (5.4 MDa) in Kluyveromyces lactis IFO 1267 was purified 320 000-fold from the culture broth of yeast. The toxin was obtained in an electrophoretically homogeneous state with a yield of 24% by hydroxyapatite column chromatography, chromatofocusing and polyacrylamide gel electrophoresis. The purified toxin was dissociated into two subunits with molecular masses of 27 kDa and above 80 kDa, as estimated by Laemmli's sodium dodecylsulfate gel electrophoresis; the exact composition ratio of the two subunits remains unestablished. The isoelectric point was between 4.4 and 4.8. As compared with the reported narrow pH range of action and instability of k1 killer toxin encoded by a double-stranded RNA plasmid of Saccharomyces cerevisiae, the K. Lactis toxin was effective with sensitive strains of S. cerevisiae in a relatively wider pH range between 4 and 8; it was stable for several months at pH 6.0 when stored below -20 degrees C. In contrast to the simple protein nature of the k1 killer toxin with a molecular mass of 11.47 kDa, the K. lactis toxin maintained a mannoprotein nature, as it was absorbed by a ConA-Sepharose column and eluted by methyl alpha-D-mannoside. The growth inhibitory activity of K. lactis toxin was enhanced 2-35-fold by the presence of 4-60% glycerol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.