Abstract
Ruminococcus is one of the keystone bacteria of the human colonic microbiota and is highly specific for utilization of resistant starch via formation of amylosomes. Here, we present the characteristics of an extracellular amylase, Rbamy5, in Ruminococcus bromii. In an in silico study, it showed low homology with any other known amylases, but it was evolutionarily classified as a GH13_36 subfamily intermediary amylase. Recombinant Rbamy5 exhibited maximum activity toward amylose (384 ± 26 U·mg-1) over soluble starch (254 ± 3 U·mg-1), amylopectin (46.1 ± 2.6 U·mg-1) and pullulan (72.5 ± 0.41 U·mg-1) at 45 °C and pH 5.0. It was also able to degrade small substrates such as maltotriose (G3), maltotetraose (G4), and maltopentaose (G5) into maltose (G2). Despite lacking a specific N-terminal domain, Rbamy5 opened the cyclodextrin ring, which resembles those of neopullulanase. Moreover, it accumulated short α-(1 → 6)-branched maltooligosaccharides from soluble starch and maltosyl-β-cyclodextrin (G2-β-CD), while panose was solely derived from pullulan. These results suggest that Rbamy5 may have a role to provide branched maltooligosaccharides to stimulate the growth of beneficial microorganisms in the human intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.