Abstract

To characterize a novel bacteriophage, En5822, isolated from the environment against Enterobacter cloacae and exploring its application as an alternate antimicrobial. Bacteriophage was isolated from sewage sample by membrane-filtration immobilization technique. It was purified and studied for its various physical properties like microscopic structure, thermal and pH stability, latent period and burst time, antimicrobial and anti-biofilm activity as well as molecular aspects by genome sequencing and analysis. En5822 is a myovirus with relative pH and thermal stability. En5822 shows a notable reduction of host bacterial biofilm as well as planktonic cultures. Whole genome sequence analysis revealed that the En5822 genome does not contain undesirable temperate lifestyle genes, antibiotic resistance genes and toxin-encoding genes. En5822 displays high lytic activity, specificity and biofilm reduction capability. It has a short latent period and high burst size that aid faster activity. Its genomic and physical attributes offer possibilities for its as an alternative antimicrobial for the treatment of drug-resistant E. cloacae infections. The study describes a novel, naturally virulent bacteriophage from environment capable of lysing multi-drug resistant E. cloacae effectively. The phage could potentially serve as an alternative strategy for treating antibiotic-resistant infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.