Abstract

Tetrahydrofolate is a ubiquitous C(1) carrier in many biosynthetic pathways in bacteria, importantly, in the biosynthesis of formylmethionyl tRNA(fMet), which is essential for the initiation of translation. The final step in the biosynthesis of tetrahydrofolate is carried out by the enzyme dihydrofolate reductase (DHFR). A search of the complete genome sequence of Helicobacter pylori failed to reveal any sequence that encodes DHFR. Previous studies demonstrated that the H. pylori dihydropteroate synthase gene folP can complement an Escherichia coli strain in which folA and folM, encoding two distinct DHFRs, are deleted. It was also shown that H. pylori FolP possesses an additional N-terminal domain that binds flavin mononucleotide (FMN). Homologous domains are found in FolP proteins of other microorganisms that do not possess DHFR. In this study, we demonstrated that H. pylori FolP is also a dihydropteroate reductase that derives its reducing power from soluble flavins, reduced FMN and reduced flavin adenine dinucleotide. We also determined the stoichiometry of the enzyme-bound flavin and showed that half of the bound flavin is exchangeable with the soluble flavins. Finally, site-directed mutagenesis of the most conserved amino acid residues in the N-terminal domain indicated the importance of these residues for the activity of the enzyme as a dihydropteroate reductase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.