Abstract

The present study sought to identify and characterize a novel antimicrobial peptide, named MOp2 from Moringa oleifera seed protein hydrolysates, and elucidate its potential antimicrobial effects on Staphylococcus aureus. MOp2, with the amino acid sequence of His-Val-Leu-Asp-Thr-Pro-Leu-Leu (HVLDTPLL), was characterized as a hydrophobic anionic AMP of the β-sheet structure. MOp2 exhibited negligible hemolytic activity at 2.0× MIC, suggesting its inhibitory effect on the growth of S. aureus (MIC: 2.204 mM). It maintained more than 90% of antimicrobial activity under 5% salt and about 78% of antimicrobial activity at a high temperature of 115 °C for 30 min. Protease, especially acid protease, reduced its antimicrobial activity to different extents. Moreover, MOp2 caused irreversible membrane damage to S. aureus cells by increasing the membrane permeability, resulting in the release of intracellular nucleotide pools. Additionally, molecular docking revealed that MOp2 could inhibit S. aureus growth by interacting with dihydrofolate reductase and DNA gyrase through hydrogen bonding and hydrophobic interactions. Overall, MOp2 could be a potential novel antimicrobial agent against S. aureus in food processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.