Abstract

Heterologous expression in COS cells followed by orientation-specific polymerase chain reaction to select and amplify cDNAs encoding surface proteins in Trypanosoma brucei resulted in the isolation of a cDNA ( approximately 1.4 kilobase) which encodes an acidic, alanine-rich polypeptide that is expressed only in bloodstream forms of the parasite and has been termed bloodstream stage alanine-rich protein (BARP). Analysis of the amino acid sequence predicted the presence of a typical NH(2)-terminal leader sequence as well as a COOH-terminal hydrophobic extension with the potential to be replaced by a glycosylphosphatidylinositol anchor. A search of existing protein sequences revealed partial homology between BARP and the major surface antigen of procyclic forms of Trypanosoma congolense. BARP migrated as a complex, heterogeneous series of bands on Western blots with an apparent molecular mass ( approximately 50-70 kDa) significantly higher than predicted from the amino acid sequence ( approximately 26 kDa). Confocal microscopy demonstrated that BARP was present in small discrete spots that were distributed over the entire cellular surface. Detergent extraction experiments revealed that BARP was recovered in the detergent-insoluble, glycolipid-enriched fraction. These data suggested that BARP may be sequestered in lipid rafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.