Abstract

The novel agarose–nickel (Ag–Ni) expanded bed matrix was investigated with regard to suitability for practical recovery of nano-bioproducts (NBPs) such as protein nanoparticles as drug delivery carriers. The matrix was immobilized by Reactive Green 19 (RG19) dye–ligand and was subjected to biochemical evaluation through batch adsorption studies (isotherm and kinetic studies) and column chromatography of bovine serum albumin nanoparticles (BSA NPs) with average size of 85–95 nm as a model system. Based on adsorption isotherm investigations, the adsorption phenomenon appeared to follow the Langmuir isotherm model with maximum binding capacity of 24.9 mg/ml adsorbent. Subsequently adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetics equation. The results demonstrated that the adsorption process kinetics followed the pseudo-first-order kinetic model. The dynamic binding capacity (DBC) for BSA NP adsorption was calculated at various flow velocities which showed favorable column efficiency at relatively high flow rates. BSA NPs recovery was studied in the expanded bed column which resulted in 74 % recovery. The results indicated that the novel resin is a promising chromatographic medium for protein nanoparticle separation with high adsorption capacity and column efficiency at reasonably high flow rates. The generic application of such dye–ligand immobilized composite matrix for the adsorption and purification of BSA NPs as a nanoparticulate bioproduct was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call